Origin of torsion-induced conductance oscillations in carbon nanotubes
نویسندگان
چکیده
We combine electromechanical measurements with ab initio density-functional calculations to settle the controversy about the origin of torsion-induced conductance oscillations in multiwall carbon nanotubes. Contrary to intuition, the observed oscillation period in multiwall tubes exhibits the same inverse-squared diameter dependence as in single-wall tubes with the same diameter. This finding suggests an intrawall origin of the oscillations and an effective electronic decoupling of the walls, which we confirm in calculations of multiwall nanotubes subject to differential torsion. We exclude the alternative origin of the conductance oscillations due to changes in the interwall registry, which would result in a different diameter dependence of the oscillation period.
منابع مشابه
Torsional electromechanical quantum oscillations in carbon nanotubes.
Carbon nanotubes can be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal –semiconductor periodic transitions. The phenomenon is observed in multiwalled carbon nanotubes, where both the torque and the current are shown to...
متن کاملSecondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes.
We investigate Fabry-Perot interference in an ultraclean carbon nanotube resonator. The conductance shows a clear superstructure superimposed onto conventional Fabry-Perot oscillations. A sliding average over the fast oscillations reveals a characteristic slow modulation of the conductance as a function of the gate voltage. We identify the origin of this secondary interference in intervalley an...
متن کاملDiscrete breathers in carbon nanotubes
We study large-amplitude oscillations of carbon nanotubes with chiralities (m, 0) and (m,m) and predict the existence of spatially localized nonlinear modes in the form of discrete breathers. In nanotubes with the index (m, 0) we find three types of discrete breathers associate with longitudinal, radial, and torsion anharmonic vibrations, however only the twisting breathers are found to be nonr...
متن کاملTheoretical studies of spin-dependent electrical transport through carbon nanotbes
Spin-dependent coherent quantum transport through carbon nanotubes (CNT) is studied theoretically within a tight-binding model and the Green’s function partitioning technique. End-contacted metal/nanotube/metal systems are modelled and next studied in the magnetic context, i.e. either with ferromagnetic electrodes or at external magnetic fields. The former case shows that quite a substantial gi...
متن کاملElectronic conduction in multi-walled carbon nanotubes: Role of intershell coupling and incommensurability
Geometry incommensurability between weakly coupled shells in multi-walled carbon nanotubes is shown to be the origin of unconventional electronic conduction mechanism, power-law scaling of the conductance, and remarkable magnetotransport and low temperature dependent conductivity when the dephasing mechanism is dominated by weak electron-electron coupling.
متن کامل